Material Test Report

COFFER® an AFG Da Company

Heat Code: YYD

Coffer Corp.

An AFGlobal Company

13770 Industrial Rd. Houston, TX 77015

ISO 9001:2008 Certified

Sales: (713) 868-4421 Fax: (713) 455-8366 Sales Order: 142394

Line: 10

PLESA STEEL INC. 00012015 PO: 307

11811 NORTH FRWY STE 500 Houston, TX 77060

Item Code: 0152910100-0020F

Qty Shipped: 50

Item Desc: FLG 10.00 0150 SO RF A105

NHT COFFR

Supplier: CMC

Supplier Heat: 3049541

Spec: ASTM A105/A105M-(13)/ASME SA 105/SA 105M-(13) Section II Part A

Eler	nent (%wt)	Ladle	Product	EPCRA	CAS#	Element (%wt)	Ladle	Product	EPCRA	CAS#
С	Carbon	0.21		to a grant of the state of the	The state of the s	: Cr Chromium	0.11		1	7440-47-3
Mn	Manganese	1.00		1	7439-96-5	Mo Molybdenum	0.02			
P	Phosphorous	0.010				V Vanadium	0.001			
S	Sulphur	0.014				Cb Columbium	0.002			
Si	Silicon	0.21				C.E.	0.42			
Cu	Copper	0.25		✓	7440-50-8	CuNiCrMoV	0.459			
Ni	Nickel	0.08		1	7440-02-0	CrMo	0.128			
						•				

Mechanical	Testing		Other
Test Bar Size	SACRIFICIAL PIECE	Country of Melt	USA
HBW	179 - 180	EF	<u>x</u>
Elg (%)	24	Fully Killed	Y
RA (%)	39		
Tensile Specimen Size (in)	.492		
Tensile (ksi)	87.1		
Yield (ksi)	48.9		
Gauge Length	2		

Product compliant with NACE MR0175 / ISO 15156 latest edition and flange dimensions to ASME B16.5

* No Weld repair performed.

* Ladle Chemical Analysis results are reported from the raw material suppliers MTR.

* Forgings are capable of passing hydrostatic test compatible with the appropriate rating.

* Elongation taken from a round specimen.

* Yield strength was determined using the .2% offset method.

* All material supplied under this order is certified to be free of mercury contamination and no equipment was used in manufacturing, fabrication or testing. mercury bearing

* When reported on MTR: Tensile Testing Per ASTM E8; Brinell Hardness Per ASTM E10; Charpy Testing Per ASTM E23

* AF Global manufactures materials according to a certified Quality Management System conforming to ISO 9001:2008 and PED 97/23/EC, Annex 1, Section 4.3

The recording of false, fictitious, or fraudulent statement or entries on this document may be punishable as a felony under federal statute.

EPCRA Supplier Notification; This product may contain one or more toxic chemicals subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-to-Know Act (Title III) of the Superfund Amendments and Reauthorization Act of 1985) and 40 C.F.R. Part 372. Potentially reportable chemicals are indicated with a checkmark in the "EPCRA" column and a Chemical Abstract Services (CAS) registry number is provided for each such chemical in addition to the percent by weight of the chemical present in this product. It is your responsibility alone to determine whether your facility is required to submit a Toxic Release inventory Report under EPCRA Section 313.

Certification No.:

1164136

Certification Date:

12/16/2014

Issued By:

Juan Diaz

This report is issued in compliance with the requirements of EN10204 3.17ISO 10474 3.1.b

Rina Sane - Metallurgical Lab Manager